Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China
نویسندگان
چکیده
Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.
منابع مشابه
Litter Decomposition in a Semiarid Dune Grassland: Neutral Effect of Water Supply and Inhibitory Effect of Nitrogen Addition
BACKGROUND The decomposition of plant material in arid ecosystems is considered to be substantially controlled by water and N availability. The responses of litter decomposition to external N and water, however, remain controversial, and the interactive effects of supplementary N and water also have been largely unexamined. METHODOLOGY/PRINCIPAL FINDINGS A 3.5-year field experiment with suppl...
متن کاملWater and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe
Both water and nitrogen (N) availability have significant effects on ecosystem CO2 exchange (ECE), which includes net ecosystem productivity (NEP), ecosystem respiration (ER) and gross ecosystem photosynthesis (GEP). How water and N availability influence ECE in arid and semiarid grasslands is still uncertain. A manipulative experiment with additions of rainfall, snow and N was conducted to tes...
متن کاملEnhancement of Carbon Sequestration in Soil in the Temperature Grasslands of Northern China by Addition of Nitrogen and Phosphorus
Increased nitrogen (N) deposition is common worldwide. Questions of where, how, and if reactive N-input influences soil carbon (C) sequestration in terrestrial ecosystems are of great concern. To explore the potential for soil C sequestration in steppe region under N and phosphorus (P) addition, we conducted a field experiment between 2006 and 2012 in the temperate grasslands of northern China....
متن کاملEffects of Nitrogen Addition and Fire on Plant Nitrogen Use in a Temperate Steppe
Plant nitrogen (N) use strategies have great implications for primary production and ecosystem nutrient cycling. Given the increasing atmospheric N deposition received by most of the terrestrial ecosystems, understanding the responses of plant N use would facilitate the projection of plant-mediated N cycling under global change scenarios. The effects of N deposition on plant N use would be affe...
متن کاملIncreased soil nutrition and decreased light intensity drive species loss after eight years grassland enclosures
Enclosures (fenced, grazing or clipping) within a certain period of years are the most common tools for restoration of degraded grasslands in temperate regions. Short-term enclosures can improve biodiversity and productivity by effectively relieving grazing pressure, while long-term enclosures can reduce species diversity. We therefore carried out a field experiment to investigate the specific ...
متن کامل